(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(S(x), x2) → f(x2, x)
f(0, x2) → 0
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(S(x), S(x1_1)) →+ f(x, x1_1)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / S(x), x1_1 / S(x1_1)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(S(x), x2) → f(x2, x)
f(0', x2) → 0'
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
f(S(x), x2) → f(x2, x)
f(0', x2) → 0'
Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
Innermost TRS:
Rules:
f(
S(
x),
x2) →
f(
x2,
x)
f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_S:0'2_0(
n4_0),
gen_S:0'2_0(
n4_0)) →
gen_S:0'2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_S:0'2_0(0), gen_S:0'2_0(0)) →RΩ(1)
0'
Induction Step:
f(gen_S:0'2_0(+(n4_0, 1)), gen_S:0'2_0(+(n4_0, 1))) →RΩ(1)
f(gen_S:0'2_0(+(n4_0, 1)), gen_S:0'2_0(n4_0)) →RΩ(1)
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) →IH
gen_S:0'2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
f(
S(
x),
x2) →
f(
x2,
x)
f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
f(
S(
x),
x2) →
f(
x2,
x)
f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)